TOOLS

S

b L

 d_1

SBL

ICC ES AC233 FSR-4645

ROUND-HEAD SCREW AND FLAT UNDERHEAD

- Screw developed and certified for metal plate applications
- The geometry of the head, designed to fit into the hole in the metal plate, guarantees excellent static performance
- Outstanding shear and tensile strength values

d ₁	d _K	CODE	L	b	pcs
[mm]	[mm]		[mm]	[mm]	
5 TX 20	7,80	LBS525	25	21	500
		SBL540	40	36	500
		SBL550	50	46	200
		SBL560	60	56	200
		SBL570	70	66	200
7 TX 30	11,00	LBS760	60	55	100
		LBS780	80	75	100
		LBS7100	100	95	100

GEOMETRY AND MECHANICAL CHARACTERISTICS

nominal diameter	d_1	[mm]	5	7
head diameter	d _K	[mm]	7,80	11,00
thread diameter	d ₂	[mm]	3,00	4,40
underhead diameter	d _{UK}	[mm]	4,90	7,00
head thickness	t ₁	[mm]	2,40	3,50
pre-drilling hole diameter ⁽¹⁾	d _V	[mm]	3,0	4,0
characteristic yield moment	$M_{y,k}$	[Nm]	5,4	14,2
characteristic withdrawal-resistance parameter ⁽²⁾	$f_{ax,k}$	[N/mm²]	11,7	11,7
characteristic tensile strength	f _{tens,k}	[kN]	7,9	15,4

⁽¹⁾ Pre-drilling valid for softwood.

 $^{^{(2)}}$ Valid for softwood - maximum density 440 kg/m³. Associated density ρ_a = 350 kg/m³. For applications with different materials or with high density please see ETA-11/0030.

STRUCTURAL VALUES

			SHEAR													
	geometry	steel-to-timber ⁽¹⁾														
			⇒ JSPLATE													
d ₁	L	b		$R_{V,k}$												
[mm]	[mm]	[mm]							[k	N]						
	25	21	S _{PLATE} = 1,5 mm	1,59		1,58	1,56		-		-		-		-	
	40	36		2,24		2,24	<u>"u</u> E	2,24	S _{PLATE} = 3,0 mm	2,24	" 'E	2,23	⊪ E	-	S _{PLATE} = 6,0 mm	-
5	50	46		2,39	S _{PLATE} = 2,0 mm	2,39		2,39		2,39		2,39	S _{PLATE} = 5,0 mm	2,38		2,36
	60	56		2,55	s, 2,	2,55	2,55	3,0	2,55	S 4,	2,55	S, 5,	2,54	S _P (6,0	2,52	
	70	66		2,71		2,71		2,71		2,71		2,71		2,69		2,68
	60	55	S _{PLATE} = 2,0 mm	2,86	∥ E	3,80 E E E E E E E E E E E E E E E E E E E	2,98	2,98 = 88,5 3,88 = 2,0 mm	3,37	∥ E	3,79	E	4,21	∥ E	4,18	
7	80	75		3,81	S _{PLATE} = 3,0 mm		3,88		4,13	S _{PLATE} = 6,0 mm	4,38	S _{PLATE} = 7,0 mm	4,66	S _{PLATE} = 8,0 mm	4,63	
	100	95		4,25	3,5,	4,25	S _{PI} 4,0	4,38	ς, ₇ , ₇ ,	4,63	S _P (6,(4,87	S _P	5,10	2,8	5,08

			SHI	TENSION			
	geometry		timber-t	thread withdrawal ⁽²⁾			
			A				
d ₁	L	b	A	$R_{V,k}$	$R_{ax,k}$		
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]		
	25	21	-	-	1,33		
	40	36	15	1,01	2,27		
5	50	46	20	1,19	2,90		
	60	56	25	1,40	3,54		
	70	66	30	1,59	4,17		
	60	55	25	2,01	4,86		
7	80	75	35	2,57	6,63		
	100	95	45	3,04	8,40		

NOTES

- (1) The characteristic shear-strength value for SBL Ø5 nails has been evaluated assuming a plate thickness = S_{PLATE} , always considering the case of thick plate according to ETA-11/0030 ($S_{PLATE} \ge 1.5$ mm). The characteristic shear-strength value for SBL Ø7 screws has been evaluated assuming a plate thickness = S_{PLATE} , and considering the thin ($S_{PLATE} \le 0.5 \, d_1$),
- intermediate $(0.5 \, d_1 < S_{PLATE} < d_1)$ or thick $(S_{PLATE} \ge d_1)$ plate case scenario.

 (2) The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

GENERAL PRINCIPLES

- Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
- Design values can be obtained from characteristic values as follows:

Design values
$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

- The coefficients γ_M and k_{mod} should be taken according to the current regulations used for the calculation. For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. For the calculation process a timber characteristic density $\rho_k = 385 \text{ kg/m}^3$ has been considered. Dimensioning and verification of the timber elements must be carried out separately. The characteristic shear strength are calculated for screws inserted without pre-drilling hole.