HBS PLATE EVO

PAN HEAD SCREW

HBS P EVO

Designed for outdoor steel-to-timber joints: the thickness of the shoulder screw is increased for completely safe, reliable fastening plates to the timber. The small sizes (5,0 and 6,0 mm) are also ideal for timber-to-timber joints.

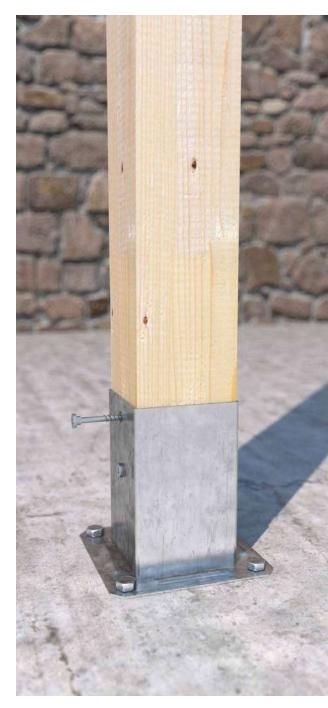
C4 EVO COATING

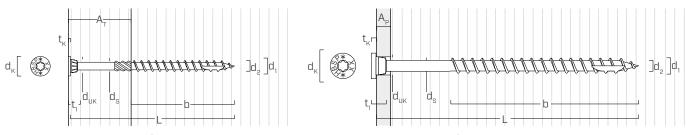
20 µm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.

AGGRESSIVE WOODS

Ideal for applications with woods containing tannin or treated with impregnating agents or other chemical processes.

CHARACTERISTICS


FOCUS	corrosiveness class C4
HEAD	shoulder for plate
DIAMETER	from 5,0 to 10,0 mm
LENGTH	from 40 to 180 mm


MATERIAL

Carbon steel, with a 20 μm coating, highly resistant to corrosion.

FIELDS OF USE

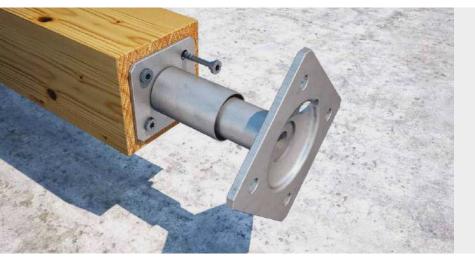
- timber based panels
- solid timber and glulam
- CLT, LVL
- high density woods
- aggressive woods (containing tannin)
- chemically treated woods
- Service classes 1, 2 and 3.

GEOMETRY AND MECHANICAL CHARACTERISTICS

HBS P EVO - 5,0 | 6,0 mm

HBS P EVO - 8,0 | 10,0 mm

Nominal diameter	d1	[mm]	5	6	8	10
Head diameter	d _K	[mm]	9,65	12,00	14,50	18,25
Tip diameter	d ₂	[mm]	3,40	3,95	5,40	6,40
Shank diameter	ds	[mm]	3,65	4,30	5,80	7,00
Head thickness	t ₁	[mm]	5,50	6,50	8,00	10,00
Washer thickness	t _K	[mm]	1,00	1,50	3,40	4,35
Underhead diameter	d _{UK}	[mm]	6,0	8,0	10,00	12,00
Pre-drilling hole diameter ⁽¹⁾	d _V	[mm]	3,0	4,0	5,0	6,0
Characteristic yield moment	M _{y,k}	[Nm]	5,4	9,5	20,1	35,8
Characteristic withdrawal-resistance parameter ⁽²⁾	f _{ax,k}	[N/mm ²]	11,7	11,7	11,7	11,7
Associated density	ρ _a	[kg/m ³]	350	350	350	350
Characteristic head-pull-through parameter ⁽²⁾	f _{head,k}	[N/mm ²]	10,5	10,5	10,5	10,5
Associated density	ρ _a	[kg/m ³]	350	350	350	350
Characteristic tensile strength	f _{tens,k}	[kN]	7,9	11,3	20,1	31,4


⁽¹⁾ Pre-drilling valid for softwood.

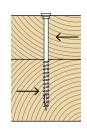
⁽²⁾ Valid for softwood - maximum density 440 kg/m³.

For applications with different materials or with high density please see ETA-11/0030.

CODES AND DIMENSIONS

d	CODE	L	b	A _T	A _P	pcs		d	CODE	I	L	b	A _P	pcs
[mm] [in]		[mm] [in]	[mm]	[mm]	[mm]		[r	mm] [in]		[mm]	[in]	[mm]	[mm]	
	HBSPEVO550	50 115/16	30	20	1.0 ÷ 10.0	200		8	HBSPEVO8120	120	4 3/4	95	1.0 ÷ 15.0	100
5 0.20	HBSPEVO560	60 2 3/8	35	25	1.0 ÷ 10.0	200		0.32	HBSPEVO8140	140	5 1/2	110	1,0 ÷ 20,0	100
TX 25	HBSPEVO570	70 2 3/4	40	30	$1.0 \div 10.0$	100		TX 40	HBSPEVO8160	160	6 1/4	130	1,0 ÷ 20,0	100
	HBSPEVO580	80 31/8	50	30	1.0 ÷ 10.0	100			HBSPEVO1060	60	2 3/8	52	1.0 ÷ 15.0	50
6	HBSPEVO680	80 31/8	50	30	1.0 ÷ 10.0	100			HBSPEVO1080	80	3 1/8	60	1.0 ÷ 15.0	50
0.24 TX 30	HBSPEVO690	90 31/2	55	35	1.0 ÷ 10.0	100		10	HBSPEVO10100	100	4	75	1.0 ÷ 15.0	50
17.30	HBSPEVO840	40 19/16	32	-	1.0 ÷ 15.0	100		0.40	HBSPEVO10120	120	4 3/4	95	1.0 ÷ 15.0	50
8	HBSPEVO860	60 2 3/8	52	_	$1.0 \div 15.0$			TX 40	HBSPEVO10140	140	5 1/2	110	1,0 ÷ 20,0	50
0.32	HBSPEVO880	80 31/8	55	-	$1.0 \div 15.0$				HBSPEVO10160	160	6 1/4	130	1,0 ÷ 20,0	50
TX 40	HBSPEVO8100	100 4	75	-	$1.0 \div 15.0$ $1.0 \div 15.0$				HBSPEVO10180	180	7 1/8	150	1,0 ÷ 20,0	50

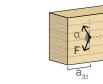
TYP R


Ideal for fastening standard Rothoblaas plates in outdoor environments.

The 5 mm diameter version is ideal for fastening patio deck planks.

MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle $\alpha = 0^{\circ}$


Load-to-grain angle $\alpha = 90^{\circ}$

		SCREWS	INSERTED	WITH PRE-	DRILLING H	SCREWS INSERTED WITH PRE-DRILLING HOLE						
d1	[mm]		5	6	8	10		5	6	8	10	
a ₁	[mm]	5∙d	25	30	40	50	4·d	20	24	32	40	
a ₂	[mm]	3∙d	15	18	24	30	4·d	20	24	32	40	
a _{3,t}	[mm]	12·d	60	72	96	120	7∙d	35	42	56	70	
a _{3,c}	[mm]	7∙d	35	42	56	70	7∙d	35	42	56	70	
a _{4,t}	[mm]	3·d	15	18	24	30	7∙d	35	42	56	70	
a _{4,c}	[mm]	3·d	15	18	24	30	3∙d	15	18	24	30	

		SCREWS IN	SCREWS INSERTED WITHOUT PRE-DRILLING HOLE								
d1	[mm]		5	6	8	10		5	6	8	10
a ₁	[mm]	12·d	60	72	96	120	5∙d	25	30	40	50
a ₂	[mm]	5·d	25	30	40	50	5∙d	25	30	40	50
a _{3,t}	[mm]	15·d	75	90	120	150	10·d	50	60	80	100
a _{3,c}	[mm]	10·d	50	60	80	100	10·d	50	60	80	100
a _{4,t}	[mm]	5·d	25	30	40	50	10·d	50	60	80	100
a _{4,c}	[mm]	5∙d	25	30	40	50	5∙d	25	30	40	50

d = nominal screw diameter

stressed end -90° < α < 90°

]a,

_la,

a, a

unloaded end 90° < α < 270°

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

NOTES:

- Minimum distances are in accordance with EN 1995:2014 as per ETA-11/0030 considering a timber characteristic density of $\rho_k \le 420~\text{kg/m}^3.$
- In the case of joints with elements in Douglas fir, the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.
- The minimum spacing for all steel-to-timber connections $(a_{1},\,a_{2})$ can be multiplied by a coefficient of 0,7.
- The minimum spacing for all panel-to-timber connections(a₁, a₂) can be multiplied by a coefficient of 0,85.

STATIC VALUES

CHARACTERISTIC VALUES
EN 1995:2014

						TENSION								
geometry				timber-to-timber	panel-to-timber ⁽¹⁾			thin steel-timber plate ⁽²⁾ plate ⁽³⁾				thread withdrawal ⁽⁴⁾	head pull-through ⁽⁵⁾	
d1	L	b	А	R _{V,k}	R	/,k	R	/,k	R _{V,k}		R	/,k	R _{ax,k}	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[k	N]	[kl	N]	[kN]		[kN]		[kN]	[kN]
	50	30	20	1,29		1,05		1,12		1,74		2,25	2,03	1,13
5	60	35	25	1,43	S _{PAN} = 9 mm	1,05	S _{PAN} = 12 mm	1,12	S _{PLATE} = 2,5 mm	1,82	S _{PLATE} = 5,0 mm	2,33	2,37	1,13
	70	40	30	1,51	9 P	1,05		1,12	S _{PL} 2,5	1,91	S _{PL} 5,0	2,42	2,71	1,13
	80	50	30	1,51		1,05		1,12		2,08		2,59	3,38	1,13
	80	50	30	2,02	= 2	1,51	= 2	1,58	Ju =	2,76	ш Щ	3,48	4,06	1,75
6	90	55	35	2,18	S _{PAN} = 12 mm	1,51	S _{PAN} = 15 mm	1,58	S _{PLATE} = 3,0 mm	2,86	S _{PLATE} = 6,0 mm	3,58	4,47	1,75
	40	32	8	1,18		-		-		2,13		3,66	3,47	2,55
	60	52	8	1,18	F	-	Ę	-	E	3,31	E	5,12	5,63	2,55
	80	55	25	2,67	= 15 mm	2,32	S _{PAN} = 18 mm	2,38	= 4,0 mm	4,29	8,0 mm	5,45	5,96	2,55
8	100	75	25	2,67	= 15	2,32	= 18	2,38	= 4	4,83	11	5,99	8,12	2,55
	120	95	25	2,67	SPAN :	2,32	PAN	2,38	S _{PLATE}	5,37	S _{PLATE}	6,53	10,29	2,55
	140	110	30	2,83	0	2,32	0	2,38	S	5,60	S	6,94	11,91	2,55
	160	130	30	2,83		2,32		2,38		5,60		7,48	14,08	2,55
	60	52	8	1,38		-		-		3,80		6,31	7,04	4,05
	80	60	20	3,45	E	2,55	E	3,12	,0 mm	5,18	E E	7,74	8,12	4,05
	100	75	25	3,77	= 15 mm	2,55	= 18 mm	3,12	0 n	6,56	= 10,0 mm	8,26	10,15	4,05
10	120	95	25	3,77		2,55	= 1{	3,12	= 5,	7,26	= 1(8,93	12,86	4,05
	140	110	30	3,91	SPAN	2,55	SPAN	3,12	S _{PLATE}	7,77	SPLATE -	9,44	14,89	4,05
	160	130	30	3,91	0	2,55	0	3,12	SP	8,09	Spl	10,12	17,60	4,05
	180	150	30	3,91		2,55		3,12	L	8,09		10,80	20,31	4,05

NOTES:

- $^{(1)}$ The characteristic shear resistances are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness S_{PAN}.
- ⁽²⁾ The shear resistance characteristics are calculated considering the case of a thin plate (S_{PLATE} \leq 0,5 d₁).
- $^{\rm (3)}$ The shear resistance characteristics are calculated considering the case of a thick plate ($S_{PLATE} \ge d_1$).
- ⁽⁴⁾ The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.
- ⁽⁵⁾ The axial resistance to head pull-through was calculated using timber elements.

In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

GENERAL PRINCIPLES:

- · Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
- Design values can be obtained from characteristic values as follows:

$$R_d = \frac{R_k \cdot K_{mod}}{\gamma_M}$$

- The coefficients γ_M and k_{mod} should be taken according to the current regulations used for the calculation.
- For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
- For the calculation process a timber characteristic density ρ_k = 420 kg/m³ has been considered.
- Values were calculated considering the threaded part as being completely inserted into the wood.
- Sizing and verification of the timber elements, panels and steel plates must be done separately.
- The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
- For different calculation configurations, the MyProject software is available (www.rothoblaas.com).